联系方式

您当前位置:首页 >> CS作业CS作业

日期:2024-09-30 05:43

Assignment 2

Due on September 29th  18:00.

1.    Given a Call option with  K  = $45, r  = 0.03, σ = 0.2, T = 1 year.

a)    Use the RMFI software to plot a graph of delta on the stock price series. Explain this graph - sign, monotonicity, and the curvature.

b)    Suppose the current underlying asset price is $40. Use the RMFI software to plot a graph of vega of the call  option with the volatility as x axis. Explain this graph – sign and monotonicity.

2.    Suppose the stock price today is 50 USD, its volatility is 0.25 and the interest rate is 0.5 percent. How many stocks we need to construct a delta-neutral portfolio, if

a)   we sold 1000 put options with strike price 55 USD and expiration in 1 year,

b)   we sold 1000 call options with strike price 50 USD and expiration in 1/4 year,

c)   we bought 1000 put options with strike price 30 USD and expiration in 1/2 year,

d)   we bought 1000 call options with strike price 50 USD and expiration in 1 month?

3.    Suppose an existing long option position is delta-neutral, but has a gamma of 800.Also assume that there exists a traded option with a delta of 0.5 and a gamma of 1.25. In order to maintain the position gamma-neutral and delta-neutral, what is the appropriate strategy to implement?

4.   The following tables record the cost of delta-hedging with different rebalancing frequencies. Fill in the blanks in parts a) – d).

a)    Hedging cost when rebalanced every week and the option closes out-of-money. Suppose you are in the short position of 100,000 European put options with  r  = 5%, σ = 20%, t = 8 weeks, S0  = 40 , K = 45 . What is the cost of delta-hedging? (Assume there are 52 trading weeks per year, cost of hedging is free of interest charge.)

Week

Stock price

Delta

Shares

Purchased

Cost  of Shares Purchased

($000)

Cumulative

Cash      Outflow ($000)

0

40

 

 

 

 

1

42.75

 

 

 

 

2

45.5

 

 

 

 

3

48.25

 

 

 

 

4

47

 

 

 

 

5

49.75

 

 

 

 

6

52.5

 

 

 

 

7

50.25

 

 

 

 

8

51

 

 

 

 

b)    Hedging cost when rebalanced every month and the option closes out-of-money. Suppose you are in the short position of 100,000 European put options with  r  = 5%, σ = 20%, t = 2 months (8 weeks), S0  = 40 , K = 45 . What is the cost of delta-hedging?

Week

Stock price

Delta

Shares

Purchased

Cost  of Shares Purchased

($000)

Cumulative

Cash      Outflow ($000)

0

40

 

 

 

 

4

47

 

 

 

 

8

51

 

 

 

 

c)    Hedging cost when rebalanced every week and the option closes in-the-money. Suppose you are in the short position of 100,000 European put options with  r  = 5%, σ = 20%, t = 8 weeks, S0  = 40 , K = 45 . What is the cost of delta-hedging?

Week

Stock price

Delta

Shares

Purchased

Cost  of Shares Purchased

($000)

Cumulative

Cash      Outflow ($000)

0

40

 

 

 

 

1

45

 

 

 

 

2

50

 

 

 

 

3

55

 

 

 

 

4

50

 

 

 

 

5

45

 

 

 

 

6

40

 

 

 

 

7

35

 

 

 

 

8

30

 

 

 

 

d)    Hedging cost when rebalanced every month and the option closes in-the-money. Suppose you are in the short position of 100,000 European put options with  r  = 5%, σ = 20%, t = 2 months (8 weeks), S0  = 40 , K = 45 . What is the cost of delta-hedging?

Week

Stock price

Delta

Shares

Purchased

Cost  of Shares Purchased

($000)

Cumulative

Cash      Outflow ($000)

0

40

 

 

 

 

4

50

 

 

 

 

8

30

 

 

 

 

e)     Calculate  the  fair  price  of  the  100,000  European  put  options  ( r  = 5%, σ = 20%, t = 8 weeks, S0  = 40 , K = 45  )  with  the  Black-Scholes-Merton  formula  using  the  RMFI software. What can you conclude from the comparison of hedging costs between a) and b)?

What if you compare the hedging cost between c) and d)? Comparing the option price with the hedging cost in a) and c), what conclusion can you make?

5.     Based on the data in the attached csv file (AAPL.csv), let’s conduct the test of normality.

a)     Calculate the standard deviation  σ   of daily percentage changes  r.

b)    Fill in the following table with the percentage of returns whose absolute size is greater than one, two, …, five standard deviations (S.D.). What’s your observation from the table?

 

Real World (%)

Normal Model(%)

> 1  σ

 

31.73

> 2  σ

 

4.55

> 3  σ

 

0.27

> 4  σ

 

0.01

> 5  σ

 

0.00

c)     Define  v = σ/|. Fill in the following table.

x

ln x

prob(v > x)

ln(prob(v > x))

1

 

 

 

2

 

 

 

3

 

 

 

4

 

 

 

5

 

 

 

d)    Assuming   v    follows  the  power  law,  namely,   prob(v  > x) = Kx −α  .  Use  the  linear regression to give the estimated  K   and  α .


版权所有:留学生编程辅导网 2020 All Rights Reserved 联系方式:QQ:821613408 微信:horysk8 电子信箱:[email protected]
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:horysk8