联系方式

您当前位置:首页 >> CS作业CS作业

日期:2024-08-23 04:35

MSc Financial Mathematics

Statistical Methods and Data Analytics 2018

MATH0099

Problem Sheet 7

Problem 1. Let X1, . . . , Xn be iid copies of a random variable X with pdf

Find a consistent estimator of θ.

Problem 2. Let X1, . . . , Xn be iid copies of a random variable X ∼ N(µ, σ2). Consider the sequence of estimators (δn)n∈N defined by

Show that

1. Var(δn) = ∞.

2. If µ ≠ 0 and we delete the interval (−δ, δ) from the sample space, then Var(δn) < ∞.

3. If µ ≠ 0, the probability content of the interval (−δ, δ) tends to zero.

If two sequences of estimaters (δn)n∈N and ()n∈N satisfy

in distribution, the asymptotic relative efficiency (ARE) of δn with respect to  is

Problem 3. Let X1, . . . , Xn be iid copies of a random variable X ∼ Poisson(λ). Find the best unbiased estimator of

1. e −λ, the probability that X = 0;

2. λe−λ, the probability that X = 1;

3. For the best unbiased estimators of parts 1. and 2., calculate the asymptotic relative efficiency with respect to the MLE.





版权所有:留学生编程辅导网 2020 All Rights Reserved 联系方式:QQ:821613408 微信:horysk8 电子信箱:[email protected]
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:horysk8