联系方式

您当前位置:首页 >> Algorithm 算法作业Algorithm 算法作业

日期:2024-10-15 05:40

Problem sheet 2

CIVL5701: Transport Networks

Problem  1. Explain why metros are preferred over trains in most urban areas.

Problem  2. Some people argue that when the demand is too large, the Mohring Effect disappears and there are actually diseconomies of scale because bus stops have limited capacity:  they can’t have too many people, and they can’t have too many buses at the same time.  Comment on this affirmation.

Problem  3. Consider that the total demand for transport in a given OD pair is 1. In the following graph, the brown arc represents public transport and the blue line represents private transport.

•  Find the equilibrium.

•  Now assume that thanks to some new infrastructure for the private cars, the cost of blue arc is reduced to + 1.8x.   Find the new equilibrium, and explain why this is an example of the Down-Thomson paradox.

Problem  4. Consider the following network, where all the Y passengers depart from O.  Half of them go to D1 and the other half to D2.  The distance between consecutive nodes is L.

You have to decide between two different ways to serve the demand. Either you have two lines:  O − T − D1, O − T − D2 so that nobody needs to transfer, or you have three lines O − T, T − D1, T − D2 so that everyone has to transfer exactly once.  Omitting the time spent at bus stops, write the total cost for each of the two alternatives. What happens when Y is low and when it is large?

Problem  5. Consider the single-line model as discussed in class in its simplest version,  i.e.,  considering neither buses’ capacities nor time spent at stops.  On the other hand, we want to model the stop spacing, i.e., what is the optimal distance between two consecutive stops?

To do this, we consider that the bus needs to stop L/s times if the spacing is s and the total cycling distance is L.  Each stop implies a fixed time τ due to breaking and accelerating.

1.  Write the total resulting total costs.

2.  Find the first-order conditions for the optimal frequency and spacing (i.e., derivatives equal to zero).

3.  Find the optimal spacing from the users’ perspective, i.e., making the cost per bus c = 0.

Problem  6. In order to improve the efficiency of public transport operation, some cities implement off- board paying zones for buses, where users tap on before the bus arrives, and tap of after alighting.  How can this be reflected in the single-line model?

Problem  7. Re-do the analysis of the single-line model but for a feeder.  That is, consider that buses drive in a segment, and users board in a uniform. distribution, but they all alight in one extreme of the segment and the bus returns empty.

Problem  8. One thousand travellers need to go from A to B. There are two possible routes:

•  First take a highway and drive for one hour regardless of congestion, and then take a local street that takes one second times the number of travellers choosing it.

•  First take a small street that takes 0.5 seconds times the number of travellers choosing it, and then take a highway which requires 1.5 hours.

In this context:

1.  Draw the network describing this situation.

2.  Find the Wardrop equilibrium.  How long does it take to travel?

3.  Suppose that the government now builds a bridge connecting the two routes in the middle, so that now, besides the two previous routes, now it is possible to make the first leg of one and the second leg of the other.  Compute the new equilibrium. Are travellers better or worse than before?

Problem  9. The formulation of the Down-Thomson paradox we studied in class assumes that every pas- senger can choose between car and public transport. In practice, there are captive users in public transport, i.e., passengers who cannot afford to have a car.  Discuss how this affects the Down-Thomson paradox.

Problem  10. Discuss about the following argument:  “In reality, most people always follow the same path in public transport.  Common lines are true, but hyper-routes barely exist”.

Problem  11. The assignment problem in on-demand public transport is usually done in batches.   That is, passengers are accumulated during δ and then assigned all together.  Explain the trade-off faced when deciding δ, i.e., why it can’t be too long but it is also inconvenient if it is too short.

Problem  12. Draw  the  demand  and  supply  curves  for  (i)  Private  cars,  (ii)  Public  transport,  and  (iii) Bicycles.  Show graphically, and give written explanations, about how each of them changes when:

1.  There are lockdowns (e.g.  due to COVID).

2.  It is raining.

3.  Petrol becomes more expensive.

4.  A new highway is built.

Problem  13. Consider an origin-destination pair that can be connected via three different routes:

1.  Route 1 costs 3 AUD, takes 25 minutes, using one line with a frequency of 2 buses per hour.

2.  Route 2 costs 5 AUD, takes 27 minutes, using one line with a frequency of 10 buses per hour.

3.  Route 3 costs 4 AUD, takes 20 minutes, and uses two lines, both with a frequency of 8 buses per hour.

Consider that pw   =  10AUD/h, pv   = 5AUD/h and a transfer penalty of 2AUD.   Determine which of these routes would be part of the hyper route decided by the users.

Problem  14. Consider that the total demand for public transport in a given OD pair is 1.  There are two lines, with times as shown in the following figure.  Find the three equilibria in the system.  Which is the best one?

Problem  15. Consider a bikesharing system that operates between two stations only A and B. The demand from  A to  B  is  much  greater than the  other way  around  (e.g.,  a  morning  peak  situation,  where  A  is  a peripheral station and B the metro).

•  Why can we say that users going from B to A induce a positive externality to the system?

•  How can this be translated in terms of the fares?

Problem  16. In class we discussed the allocation of streets to bike lanes, focusing on mode choice between car and bikes. How does the analysis change if the two alternatives are public transport and bikes?

Problem  17. Consider a low-population area, served by three low-demand frequencies.  Line  1 goes from A to B, which takes 45 minutes, and departs once per hour, exactly at 1:00, 2:00, etc.  Line 2 goes from B to C, which takes 20 minutes, and departs every two hours, at 1:30, 3:30, etc.  Line 3 goes from C to A, which takes half an hour, and departs every half an hour, at 1:15, 1:45, etc.  Considering a period of 2 hours (from 1:00 to 2:59), find the minimum fleet that can serve this system, using the bipartite graph studied in class and admitting deadheadings.  Describe the itinerary of every bus in your solution.




版权所有:留学生编程辅导网 2020 All Rights Reserved 联系方式:QQ:821613408 微信:horysk8 电子信箱:[email protected]
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:horysk8